Release Notes for Partial Differential Equation Toolbox™

How to Contact MathWorks

www.mathworks.com

comp.soft-sys.matlab

www.mathworks.com/contact TS.html Technical Support

Web

Newsgroup

suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Release Notes for Partial Differential Equation ToolboxTM

© COPYRIGHT 2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Contents

R20	<u>13a</u>
Performance and robustness enhancements in meshing algorithm	2
New example	3
R20	<u>12b</u>
Coefficients of parabolic and hyperbolic PDEs that can be	
functions of the solution and its gradient	6
Graphics export from pdetool	7
pdegplot labels edges and subdomains	8
New examples	9
pdesmech shear strain calculation change	10

R2013a

Version: 1.2

New Features: Yes Bug Fixes: Yes

Performance and robustness enhancements in meshing algorithm

The meshing (geometry triangulation) functions in initmesh and adaptmesh provide an enhancement option for increased meshing speed and robustness. Choose the enhanced algorithm by setting the MesherVersion name-value pair to 'R2013a'. The default MesherVersion value of 'preR2013a' gives the same mesh as previous toolbox versions.

The enhancement is available in pdetool in the Mesh > Parameters > Mesher version menu.

New example

There is a new example of heat distribution in a radioactive rod. View the example here. To run the example at the MATLAB $^{\circledR}$ command line:

echodemo radioactiveRod

R2012b

Version: 1.1

New Features: Yes Bug Fixes: No

Coefficients of parabolic and hyperbolic PDEs that can be functions of the solution and its gradient

You can now solve parabolic and hyperbolic equations whose coefficients depend on the solution u or on the gradient of u. Use the parabolic or hyperbolic commands, or solve the equations using pdetool. For details, see the function reference pages.

Graphics export from pdetool

You can save the current pdetool figure in a variety of image formats. Save the figure using the File > Export Image menu. See File Menu.

pdegplot labels edges and subdomains

pdegplot now optionally labels:

- The edges in the geometry
- The subdomains in the geometry

To obtain these labels, set the edgeLabels or subdomainLabels name-value pairs to 'on'. For details, see the pdegplot reference page.

New examples

There is a new example of uniform pressure load on a thin plate. View the example here. To run the example at the MATLAB command line:

echodemo clampedSquarePlateExample

There is a new example of nonlinear heat transfer in a thin plate. View the example here. To run the example at the MATLAB command line:

echodemo heatTransferThinPlateExample

There is a new example of a system of coupled PDEs. View the example here. To run the example at the MATLAB command line:

echodemo deflectionPiezoelectricActuator

pdesmech shear strain calculation change Compatibility Considerations: Yes

The pdesmech function now calculates shear strain according to the engineering shear strain definition. This has always been the documented behavior. However, the previous calculation was performed according to the tensor shear strain calculation, which gives half the value of the engineering shear strain.

Compatibility Considerations

pdesmech now returns shear strain values exactly twice as large as before.